3 Flutes 45 ° He	lix End Mills for SUS		
	 Endmills for alloy steel, SUS, Ti/Ni base and hard to cut materials. JCRO coating provides wear resistance im avoid edge stress in various applications. Excellent work surface finish by 3 flute an 45° degree helix design for high speed, fee Minimize fracturing at high feed by high 	alloy, Incon provement d deep chip ed conditior FRS fine WC	el as well as pocket. n. grade.
	45° Helix Angle	D Size Ø0.5 ~ 5 Ø6 ~ 12	D Tolerance +0~-0.01 mm -0.01~-0.025 mm
(+0 -0.01) -0.015 -0. Ø0.5 ~ 5 Ø6 ~ 12 Ø16 ~ 2	0 Shield Edge	ø16 ~ 20	-0.015~ -0.03 mm

3SUE Cutting Condition

Material	Stainless Steels / Titanium Alloy Steels			Hardened Steels			Heat Resistant Alloy / Inconel					
Hardness					45 ~ 55HRC							
Outside Diameter	RPM	FEED	Ap Axial Depth	Ae Radial Depth	RPM	FEED	Ap Axial Depth	Ae Radial Depth	RPM	FEED	Ap Axial Depth	Ae Radial Depth
Ø0.8	6,400	60	1.2	0.16	3,900	30	0.8	0.04	2,000	10	0.8	0.04
Ø1	5,600	70	1.5	0.20	3,500	30	1.0	0.05	1,700	15	1.0	0.05
Ø2	4,800	80	3.0	0.40	2,900	34	1.5	0.08	1,400	20	1.5	0.08
Ø3	4,000	90	4.5	0.60	2,200	45	2.5	0.13	1,400	25	2.5	0.13
Ø4	3,300	140	6.0	0.80	1,800	70	3.0	0.15	1,200	35	3.0	0.15
Ø5	2,700	170	7.5	1.00	1,500	90	4.0	0.20	1,000	45	4.0	0.20
Ø6	2,400	180	9.0	1.20	1,400	90	5.0	0.25	900	45	5.0	0.25
Ø8	1,800	190	12.0	1.50	1,000	100	7.0	0.35	720	40	7.0	0.35
Ø 10	1,400	190	14.0	1.80	900	110	9.0	0.45	600	40	9.0	0.45
Ø12	1,200	150	17.0	2.00	700	90	10.0	0.50	500	35	10.0	0.50
Ø16	900	120	23.0	2.50	550	60	15.0	0.75	360	30	15.0	0.75
Depth of Cut		≤0.2D	D AP ≤0.5D (D AP ≤0.3D (D	<pre></pre>				0.05D ≦1D			5D	

• If the effective length is long, reduce the RPM and feed in the same proportion.

• If the diameter or effective length of your tool are not on the table, adjust it compared similarity value on the table.

- The edge of the flute precisely grinded. If you want to measure the tool, and to avoid damaging on the flutes, use non-contact measuring method.
 Use this table for your reference. Adjust the parameters depending on your machining geometry, machining purpose and CNC.
- If the table over the maximum RPM and feed of your machine, or found red heat on the material, adjust RPM and feed in the same
- Use a machine with low vibration and good rigidity (\emptyset 1 or less, the vibration tolerance management should be within 5 μ).

• If the table over the maximum RPM and feed of your machine, or found red heat on the material, adjust RPM and feed in the same

• RPM : rev./min • Feed : mm/min

proportion.

