Type	Rc Hardness	MILLING SFM (Vc)					CHIPLOAD PER FLUTE (Fz)				
		2 flute stub/std.	2 flute extra length	3\&4flute stub / std.	$3 \& 4$ fute extra length	Diamond Coated	1/32"-1/8"	1/8" - 1/4"	1/4"-1/2"	1/2" - 1"	1"-1-1/4"
COBALT BASE ALLOYS											
Powdered Metal, Stellite, Hs-21, Haynes 25/188, X-40, L-605	$\begin{aligned} & <35 \\ & >35 \end{aligned}$	-	-	$\begin{aligned} & \begin{array}{l} 175-225 \\ 125-175 \end{array} \end{aligned}$	$\begin{aligned} & 150-200 \\ & 100-150 \\ & \end{aligned}$	--	$\begin{aligned} & .0005^{\prime \prime} .00010^{\prime \prime \prime} \\ & .0003^{\prime \prime} \end{aligned}$	$\begin{gathered} .0008 "-.0020 " \\ .0005 "^{\prime \prime} .00155^{\prime \prime} \end{gathered}$	$\begin{aligned} & .0010^{\prime \prime} .0030 " 10 \text { " } 0.02020^{\prime \prime} \\ & \hline \end{aligned}$	$.0020^{\prime \prime}-.0040^{\prime \prime}$	
NICKEL BASE ALLOYS											
Invar, Kovar, Inconel-625/718, Waspaloy, Rene, Hastelloy, A286	$\begin{aligned} & <35 \\ & >35 \end{aligned}$	-	-	$\begin{aligned} & 125-175 \\ & 70-115 \end{aligned}$	$\begin{aligned} & 100-150 \\ & 70-100 \end{aligned}$	-		$\begin{aligned} & .0008^{\prime \prime}-.0020 " 1 \\ & .0005^{\prime \prime}-.0015^{\prime \prime} \end{aligned}$		$.0020^{\prime \prime}-.0040^{\prime \prime}$ $.0010^{\prime \prime}-.0030^{\prime \prime}$	$\begin{aligned} & .0030^{\prime \prime} .0050 " \\ & .0020^{\prime \prime} .0040^{\prime \prime} \end{aligned}$
IRON BASE ALLOYS											
Incoloy 800-802, Multimet N-155, Timkin 16-25-6, Carpenter 22-b3	$\begin{aligned} & <35 \\ & >35 \end{aligned}$	-	-	$\begin{aligned} & \begin{array}{l} 175-225 \\ 125-175 \end{array}, ~ \end{aligned}$	$\begin{aligned} & 150-200 \\ & 100-150 \end{aligned}$	-	$\begin{aligned} & .0005^{" ~}-.0010^{\prime \prime} \\ & .0003^{\prime}-.0005^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0008^{"-.0020 " 1} \\ & .0005^{\prime \prime}-.0015^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0010^{\prime \prime}-0030 " 10 \text { " } 0.0200^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & .00201 "-.0040 " 10 \\ & .0010^{\prime \prime}-.0030^{\prime \prime} \end{aligned}$.0030" -0050" ".0040"
MONEL											
Monel - 65% Nickel		175-300	125-175	175-300	125-175	-	.0007" - $0015{ }^{\text {" }}$.0010" - 0025 "	.0015". 0040 "	.0030". 0050 "	.0040"-0060"
TITANIUM ALLOYS											
Commercially Pure, 6Al--4V, Astm 1/2/3,6Al-25N-4Zr-2Mo-Si		200-300	125-250	200-300	125-250	-	.0007" - $0015{ }^{\text {" }}$.0010". $0025{ }^{\prime \prime}$.0015" - 0040"	.0030" -0050"	.0040" - 0060"
5553/ Beta Titanium		-	-	125-225	100-200	-	.0005" - 0010 "	.0008" - 0020 "	.0010 - . 0030"	.0020".0040"	.0030 - .0050"
STAINLESS STEELS											
13/8, 15/5, 17-4,pHTypes	<35 >35	-	-	$\begin{aligned} & \begin{array}{l} 150-250 \\ 125-175 \end{array} \end{aligned}$	$\begin{aligned} & 100-150 \\ & 80-150 \end{aligned}$	-		$\begin{aligned} & .0008^{"-.0020 " 1} \\ & .0005^{\prime \prime}-.00155^{\prime \prime} \end{aligned}$		$.0020^{\prime \prime}-.004010$	$\begin{aligned} & .0030^{\prime \prime}-.0050 " \\ & .0020^{\prime \prime}-.0040^{\prime \prime} \end{aligned}$
Inox, 200 Serie, 300 Series	<35	-	-	200-250	125-175	-	.0005" ${ }^{\text {a }}$.0010"	.0008" ${ }^{\text {a }}$.0020"	.0010". $.0030^{\prime \prime}$.0020" $0.0040^{\prime \prime}$.0030" -0050"
	>35	-	-	$150-200$ $90-125$	$100-150$ $80-120$	-	.0003" $0.00055^{\prime \prime}$.0005" $0.00155^{\prime \prime}$.0010" $000300^{\prime \prime}$	$\xrightarrow{.00200^{\prime \prime}-.0040^{\prime \prime}}$
304L, 316L, Nitronic 50, Inox	>35	-	-	75-110	80.90 60	-	.0003"-.0005"	.0005" -0010"	.0010".-0015"	$.0010^{\prime \prime}-.0030^{\prime \prime}$	$.00020-.00040 " 0$
400 Series	$\begin{aligned} & <35 \\ & >35 \end{aligned}$	-	-	$\begin{aligned} & 150-250 \\ & \\ & \hline 1050 \end{aligned}$	$\begin{aligned} & 100-150 \\ & 100 \end{aligned}$	-		$.0008^{-.0020^{\prime \prime}}$	$.0010^{\prime \prime} \text { ". } 003010$	$.0020^{\prime \prime}-.0040^{\prime \prime}$	$.0030^{\prime \prime}-.0050^{\prime \prime}$
HIGH STRENGTH TOOL STEELS											
4140, 4340, 6150, 5210, A2, D2, P20, H11, $113,52,01$	<30	-	-	150-225	125-175	-	.0005" - .0010"	.0008" - 0020 "	.0010"-.0030"	.0020".0040"	.0030"-.0050"
	30-38	-	-	90-125	80-120	-	.0003"-.0005"	.0005" - 0015 "	.0010" - .0020"	.0010".0030"	.0020" $0.0400^{\prime \prime}$
	>38	-	-	60-90	50-80	-	.0002" -.0004"	.0003" -0007"	.0008" -0015"	.0010"-0025"	.0015".0035"
<35 MEDIUM ALLOY TOOL STEELS											
200, 250,300,8620	$\begin{aligned} & <35 \\ & >35 \end{aligned}$	-	-	$\begin{aligned} & 175-250 \\ & 100-175 \end{aligned}$	$\begin{aligned} & 150-200 \\ & 100-150 \end{aligned}$	-	$\begin{aligned} & .0007^{\prime \prime}-0015^{\prime \prime} \\ & \hline 0005^{-0} 01010 \end{aligned}$	$\begin{aligned} & .0010 "-.0025 " \\ & .0008 "^{\prime \prime}-.0020^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0015 " \text { ". } 0.040 \text { " } \\ & .0010030 " \\ & \hline \end{aligned}$	$\begin{aligned} & .0030^{\prime \prime}-.0050 " 1 \\ & .0020^{\prime \prime}-.0040 " \end{aligned}$	$\begin{aligned} & .0040^{\prime \prime} .0060 " 10 \\ & .0030^{\prime \prime} .0050^{\prime \prime} \end{aligned}$
CARBON STEELS											
A36, 12L14, 1000^{\prime}, 1100^{\prime} ', 1300^{\prime} 's	$\begin{aligned} & <35 \\ & >35 \end{aligned}$	-	-	$\begin{aligned} & 175-250 \\ & 100-175 \end{aligned}$	$\begin{aligned} & 150-200 \\ & 100-150 \end{aligned}$			$\begin{aligned} & .0010 "-.0025 " \\ & .0008 "^{\prime \prime}-.0020^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0015 " \text { ". } 0.040 \text { " } \\ & .0010030 \text { - } .0030 \end{aligned}$	$\begin{aligned} & .0030^{\prime \prime}-.0050 " 1 \\ & .0020^{\prime \prime}-.0040 " \end{aligned}$	
CAST MATERIAL											
Steel		225-325	175-250	250-350	175-250	-	.0010" - .0020"	.0015". $00400^{\prime \prime}$.0020" - .060"	.0030". 01000	.0050" - 01000
Ductile Iron		200-300	125-200	200-300	125-200	-	.0005" - 00015 "	.0010" - $00300^{\prime \prime}$.0015" - .040"	.0020"-.0060"	.0030" - .088"
Gray Iron		225-325	175-250	250-350	175-250	-	.0010" $-.0020^{\prime \prime}$.0015" -.0040"	.0020" - $00600^{\prime \prime}$.0030".0100"	.0050" - 01001
Aluminum		250-350	250-350	250-350	250-350	-	.0010" - $0020{ }^{\prime \prime}$.0015"-.0040"	.0020" - .066"	.0030"-.0100"	.0050" - .0100"
ALUMINUM											
Aircraft Grade (6061, 7075)	$\begin{aligned} & \text { Standard } \\ & \text { Speed } \end{aligned}$	300-500	300-500	300-500	300-500	-	.0010"-.0020"	.0015". $00400^{\prime \prime}$.0020" - .066"	.0030".0100"	.0050"-.0150"
	$\begin{aligned} & \text { Hphgh } \\ & \text { Speed } \end{aligned}$	(SEE HIGH SPEED ALUMINUM CHART - PAGE 272)									
MAGNESIUM											
		300-500	300-500	300-500	$300-500$	-	.0010" -0020"	.0015".0040"	.0020" - 0060"	.0030".0100"	.0050"-0100"
COPPER											
Copper Alloys		300-400	250-350	300-450	250-350	-	.0007" - $0015{ }^{\text {" }}$.0010".0025"	.0015". $00035^{\prime \prime}$.0020".0080"	.0040"-0100"
BRASS, BRONZE											
Brass, Aluminum/Bronze, Low Silicon Bronze		300-400	200-300	275-375	200-300	-	.0007 $-.0015^{\prime \prime}$.0010" ${ }^{\text {. } 0025 " ~}$.0015" -0035"	.0020" -0080"	.0040" -0100"
COMPOSITE MATERIAL											
Glass Epoxy, Fiberglass, Plastics		200-400	200-400	200-400	200-400	200-500	.0010" -0020"	.0015"-.0040"	.0020" - 0060"	.0030".0100"	.0050"-.0100"
Graphite, G10		(SEE GRAPHITE CHART - PAGE 293)				300-1000	.0010". $00200^{\prime \prime}$.0015". 0040 "	.0020"-.066"	.0030"-.0100"	.0050"-.0100"

When plunging into a solid, drop feed by approximately 50%. 20% of diameter for basic engagement parameters.

NOTE - ABOVE ARE STARTING PARAMETERS ONLY. HIGHER RESULTS MAY BE ACHIEVED WITH OPTIMUM CONDITIONS.

